提升Python程序性能的7个习惯
发布日期:2022/10/6 19:40:55 浏览量:
掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。
1、使用局部变量
尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。
使用局部变量替换模块名字空间中的变量,例如 ls = os.linesep。一方面可以提高程序性能,局部变量查找速度更快;另一方面可用简短标识符替代冗长的模块变量,提高可读性。
2、减少函数调用次数
对象类型判断时,采用isinstance最优,采用对象类型身份(id())次之,采用对象值(type())比较最次。
-
#判断变量num是否为整数类型
-
type(num) == type(0) #调用三次函数
-
type(num)istype(0) #身份比较
-
isinstance(num,(int)) #调用一次函数
不要在重复操作的内容作为参数放到循环条件中,避免重复运算。
-
#每次循环都需要重新执行len(a)
-
whilei < len(a):
-
statement
-
#len(a)仅执行一次
-
m = len(a)
-
whilei < m:
-
statement
如需使用模块X中的某个函数或对象Y,应直接使用from X import Y,而不是import X; X.Y。这样在使用Y时,可以减少一次查询(解释器不必首先查找到X模块,然后在X模块的字典中查找Y)。
3、采用映射替代条件查找
映射(比如dict等)的搜索速度远快于条件语句(如if等)。Python中也没有select-case语句。
-
#if查找
-
ifa ==1:
-
b =10
-
elifa ==2:
-
b =20
-
...
-
#dict查找,性能更优
-
d = {1:10,2:20,...}
-
b = d[a]
4、直接迭代序列元素
对序列(str、list、tuple等),直接迭代序列元素,比迭代元素的索引速度要更快。
-
a = [1,2,3]
-
#迭代元素
-
foritemina:
-
print(item)
-
#迭代索引
-
foriinrange(len(a)):
-
print(a[i])
5、采用生成器表达式替代列表解析
列表解析(list comprehension),会产生整个列表,对大量数据的迭代会产生负面效应。
而生成器表达式则不会,其不会真正创建列表,而是返回一个生成器,在需要时产生一个值(延迟计算),对内存更加友好。
-
#计算文件f的非空字符个数
-
#生成器表达式
-
l = sum([len(word)forlineinfforwordinline.split()])
-
#列表解析
-
l = sum(len(word)forlineinfforwordinline.split)
6、先编译后调用
使用eval、exec函数执行代码时,最好调用代码对象(提前通过compile()函数编译成字节码),而不是直接调用str,可以避免多次执行重复编译过程,提高程序性能。
正则表达式模式匹配也类似,也最好先将正则表达式模式编译成regex对象(通过re.complie()函数),然后再执行比较和匹配。
7、模块编程习惯
模块中的最高级别Python语句(没有缩进的代码)会在模块导入(import)时执行(不论其是否真的必要执行)。因此,应尽量将模块所有的功能代码放到函数中,包括主程序相关的功能代码也可放到main函数中,主程序本身调用main函数。
可以在模块的main函数中书写测试代码。在主程序中,检测name的值,如果为’main’(表示模块是被直接执行),则调用main()函数,进行测试;如果为模块名字(表示模块是被调用),则不进行测试。
来自:知乎,https://zhuanlan.zhihu.com/p/38160586
作者:爱coding,会编程的核电工程师。
个人博客地址:zhihu.com/people/zhong-yun-75-63
马上咨询: 如果您有业务方面的问题或者需求,欢迎您咨询!我们带来的不仅仅是技术,还有行业经验积累。
QQ: 39764417/308460098 Phone: 13 9800 1 9844 / 135 6887 9550 联系人:石先生/雷先生