微立顶科技

新闻资讯

创新 服务 价值

  python去噪函数_Python | 简单的扩音,音频去噪,静音剪切

发布日期:2022/10/19 11:52:13      浏览量:

原标题:Python | 简单的扩音,音频去噪,静音剪切

之前一段时间一直在搞数字语音识别,在训练算法上耗费了很多时间,但结果不尽人意。后来才发现自己一直忽视了音频预处理的一步,于是转而囫囵吞枣般学习一些简单的信号处理算法。这里简单介绍一下以下内容:

扩音

音频去噪

静音剪切

文末将会给出源代码和demo代码的git库地址,有需要的同学请自取。

基本概念

数字信号

数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作一个以时间为下标的数组。比如,x[n],n为整数。比如下图是一个正弦信号(n=0,1, ..., 9):

a691430e50fa49ed8b31380aba775311_th.png

对于任何的音频文件,实际上都是用这种存储方式,比如,下面是对应英文单词“skip”的一段信号(只不过由于点太多,笔者把点用直线连接了起来):

5036c638fc674c8aa03e0d029999dd46_th.png

衡量数字信号的能量(强度),只要简单的求振幅平方和即可:

E = sum(x[n]*x[n])

频率

我们知道,声音可以看作是不同频率的正弦信号叠加。那么给定一个声音信号(如上图),怎么能够知道这个信号在不同频率区段上的强度呢?答案是使用离散傅里叶变换。对信号x[n], n=0, ..., N-1,通常记它的离散傅里叶变换为X[n],它是一个复值函数。

比如,对上述英文单词“skip”对应的信号做离散傅里叶变换,得到它在频域中的图像是:

e9cd085539054f7599c927db3abb40d7_th.png

可以看到能量主要集中在中低音部分(约16000Hz以下)。

在频域上,也可以计算信号的强度,因为根据Plancherel定理,有:

E = sum(x[n]*x[n]) = 1/N*sum(|X[n]|*|X[n]|)

分帧

对于一般的语音信号,长度都至少在1秒以上,有时候我们需要把其中比如25毫秒的一小部分单独拿出来研究。将一个信号依次取小段的操作,就称作分帧。技术上,音频分帧是通过给信号加一系列的窗函数实现的。

我们把一种特殊的函数w[n],称作窗函数,如果对所有的n,有0<=w[n]<=1,且只有有限个n使得w[n]>0。比如去噪要用到的汉宁窗,三角窗。

a621fdfa53214c6c96d40ca714256ddf_th.png

汉宁窗

549db1d1e1954163a188154ecb1a089b_th.png

三角窗

我们将平移的窗函数与原始信号相乘,便得到信号的“一帧”:

w[n+d]*x[n]

比如用长22.6毫秒的汉宁窗加到“skip”信号大约中间部位上,得到一帧的信号:

e4c09208a66646109051f92bf6a2fbb0_th.png

可见除一有限区间之外,加窗后的信号其他部分都是0。

对一帧信号可以施加离散傅里叶变换(也叫短时离散傅里叶变换),来获取信号在这一帧内(通常是很短时间内),有关频率-能量的分布信息。

如果我们把信号按照上述方法分成一帧一帧,又将每一帧用离散傅里叶变换转换到频域中去,最后将各帧在频域的图像拼接起来,用横坐标代表时间,纵坐标代表频率,颜色代表能量强度(比如红色代表高能,蓝色代表低能),那么我们就构造出所谓频谱图。比如上述“skip”发音对应的信号的频谱图是:

b40ed09a48304b289e04a197277be342.png

(使用5.8毫秒的汉宁窗)

从若干帧信号中,我们又可以恢复出原始信号。只要我们适当选取窗口大小,以及窗口之间的平移距离L,得到 ..., w[n+2L], w[n+L], w[n], w[n-L], w[n-2L], ...,使得对k求和有:

sum(w[n+kL]) = 1

从而简单的叠加各帧信号便可以恢复出原始信号:

sum(x[n]*w[n+kL]) = x[n]

最后,注意窗函数也可以在频域作用到信号上,从而可以起到取出信号的某一频段的作用。

下面简单介绍一下3种音效。

1. 扩音

要扩大信号的强度,只要简单的增大信号的“振幅”。比如给定一个信号x[n],用a>1去乘,便得到声音更大的增强信号:

a*x[n]

同理,用系数0

2. 去噪(降噪)

对于白噪音,我们可以简单的用“移动平均滤波器”来去除,虽然这也会一定程度降低声音的强度,但效果的确不错。但是,对于成分较为复杂,特别是频段能量分布不均匀的噪声,则需要使用下面的噪声门技术,它可以看作是一种“多带通滤波器”。

这个特效的基本思路是:对一段噪声样本建模,然后降低待降噪信号中噪声的分贝。

更加细节的说,是在信号的若干频段f[1], ..., f[M]上,分别设置噪声门g[1], ..., g[M],每个门都有一个对应的阈值,分别是t[1], ..., t[M]。这些阈值时根据噪声样本确定的。比如当通过门g[m]的信号强度超过阈值t[m]时,门就会关闭,反之,则会重新打开。最后通过的信号便会只保留下来比噪声强度更大的声音,通常也就是我们想要的声音。

为了避免噪声门的开合造成信号的剧烈变动,笔者使用了sigmoid函数做平滑处理,即噪声门在开-关2个状态之间是连续变化的,信号通过的比率也是在1.0-0.0之间均匀变化的。

实现中,我们用汉宁窗对信号进行分帧。然后对每一帧,又用三角窗将信号分成若干频段。对噪声样本做这样的处理后,可以求出信号每一频段对应的阈值。然后,又对原始信号做这样的处理(分帧+分频),根据每一帧每一频段的信号强度和对应阈值的差(diff = energy-threshold),来计算对应噪声门的开合程度,即通过信号的强度。最后,简单的将各频段,各帧的通过信号叠加起来,便得到了降噪信号。

比如原先的“skip”语音信号频谱图如下:

e803780912e04d91b76678a062bf2353.png

可以看到有较多杂音(在高频,低频段,蓝色部分)。采集0.25秒之前的声音作为噪声样本,对信号作降噪处理,得到降噪后信号的频谱图如下:

d5d79b2337ab403a985ee24b0fdb0e7c.png

可以明显的看到大部分噪音都被清除了,而语音部分仍完好无损,强度也没有减弱,这是“移动平均滤波器”所做不到的。

3. 静音剪切

在对音频进行上述降噪处理后,我们还可以进一步把多余的静音去除掉。

剪切的原理十分简单。首先用汉宁窗对信号做分帧。如果该帧信号强度过小,则舍去该帧。最后将保留的帧叠加起来,便得到了剪切掉静音部分的信号。

比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:

23fec390b3cd407fb25769c4269b445a.png

参考

维基百科词条-噪声门

开源音频处理软件 Audacity (频谱图都是直接用它画的,扩音,降噪,静音剪切这些效果它都有源代码)

我的GitHub



  业务实施流程

需求调研 →

团队组建和动员 →

数据初始化 →

调试完善 →

解决方案和选型 →

硬件网络部署 →

系统部署试运行 →

系统正式上线 →

合作协议

系统开发/整合

制作文档和员工培训

售后服务

马上咨询: 如果您有业务方面的问题或者需求,欢迎您咨询!我们带来的不仅仅是技术,还有行业经验积累。
QQ: 39764417/308460098     Phone: 13 9800 1 9844 / 135 6887 9550     联系人:石先生/雷先生